Login

EXPLORING THE ROLE OF ARTIFICIAL INTELLIGENCE IN TRANSFORMING MEDICAL IMAGING FOR DIAGNOSTICS

Vol. 3 No. 01 (2025): PHENOMENON : Multidisciplinary Journal Of Sciences And Research:

Ahmad A'la (1), Asna Nur Izziyah (2), Ridho Haikal Pratama (3)

(1) Islamic State University of Sunan Kalijaga, Indonesia
(2) Dong-A University, South Korea, Indonesia
(3) Ahmad Dahlan University, Indonesia, Indonesia
Fulltext View | Download

Abstract:

This paper investigates the role of artificial intelligence (AI) in the medical field. This research uses descriptive qualitative methods and gathers data from related previous studies. The findings show that AI contributes to the medical field, particularly in medical imaging and diagnosis, enhancing accuracy and efficiency. AI systems, such as deep learning models and transformers, are being increasingly utilized to analyze medical images, detect abnormalities, and assist in early disease detection, such as cancer, eye diseases, and COVID-19. Transformer-based models have shown great potential in improving diagnostic accuracy by efficiently analyzing large and complex medical data. These models can capture long-range dependencies, making them ideal for handling diverse medical imaging modalities, such as X-rays, CT scans, and MRIs. Moreover, AI has proven to be highly effective in areas like retinal disease detection, lung cancer diagnosis, and infectious disease identification. Transformer models continue to demonstrate promise, with the potential to revolutionize medical diagnostics by offering faster, more precise, and personalized treatment options.

References

Agarwal, M., Gill, K. S., Upadhyay, D., & Dangi, S. (2024, May). CHARTING NEW FRONTIERS USING TRANSFER LEARNING IN OCT IMAGE ANALYSIS FOR RETINAL HEALTH. In 2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES) (pp. 1-5). IEEE. DOI: 10.1109/ICSSES62373.2024.10561346

Alam, M. A., Sohel, A., Hasan, K. M., & Ahmad, I. (2024). ADVANCING BRAIN TUMOR DETECTION USING MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE: A SYSTEMATIC LITERATURE REVIEW OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. Strategic Data Management and Innovation, 1(01), 37-55. Retrieved from https://www.researchgate.net/profile/Imran-Ahmaad/publication/387648485f

Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A REVIEW OF THE ROLE OF ARTIFICIAL INTELLIGENCE IN HEALTHCARE. Journal of Personalized Medicine, 13(6), 951. Retrieved from https://doi.org/10.3390/jpm13060951

Alowais, S.A., Alghamdi, S.S., Alsuhebany, N., Alqahtani., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Al Yami, A. S., Al Harbi, S., Albekairy, A. M. (2023). REVOLUTIONIZING HEALTHCARE: THE ROLE OF ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE. BMC Med Educ 23, 689. Retrieved from https://doi.org/10.1186/s12909-023-04698-z

Baidya, R., & Jeong, H. (2023). ANOMALY DETECTION IN TIME SERIES DATA USING REVERSIBLE INSTANCE NORMALIZED ANOMALY TRANSFORMER. Sensors, 23(22), 9272. Retrieved from https://doi.org/10.3390/s23229272

Barragán-Montero, A., Javaid, U., Valdés, G., Nguyen, D., Desbordes, P., Macq, B., ... & Lee, J. A. (2021). ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MEDICAL IMAGING: A TECHNOLOGY REVIEW. Physica Medica, 83, 242-256. Retrieved from https://doi.org/10.1016/j.ejmp.2021.04.016

Bhandari, B., Park, G., & Shafiabady, N. (2023). IMPLEMENTATION OF TRANSFORMER-BASED DEEP LEARNING ARCHITECTURE FOR THE DEVELOPMENT OF SURFACE ROUGHNESS CLASSIFIER USING SOUND AND CUTTING FORCE SIGNALS. Neural Computing and Applications. Retrieved from https://doi.org/10.1007/s00521-023-08425-z

Cahyo, E. N., Pratama, R. H., & Nilma, W. L. (2025). A BIBLIOMETRIC ANALYSIS OF CURRENT RESEARCH TRENDS IN KOREAN WEBTOONS FROM 2018 TO 2025. Lingua Madani Journal: Language Studies, Culture and Education, 1(1), 43–51. Retrieved from https://jurnal.umina.ac.id/index.php/lmj/article/view/26

Cao, B., Zhang, H., Wang, N., Gao, X., & Shen, D. (2020). AUTO-GAN: SELF-SUPERVISED COLLABORATIVE LEARNING FOR MEDICAL IMAGE SYNTHESIS. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 10486-10493. Retrieved from https://doi.org/10.1609/aaai.v34i07.6619

Choi, S. R., & Lee, M. (2023). TRANSFORMER ARCHITECTURE AND ATTENTION MECHANISMS IN GENOME DATA ANALYSIS: A COMPREHENSIVE REVIEW. Biology, 12(7), 1033. Retrieved from https://doi.org/10.3390/biology12071033

Chung, J., Song, S., & Son, H. (2024). EXPLORING NATURAL LANGUAGE PROCESSING THROUGH AN EXEMPLAR USING YOUTUBE. International journal of environmental research and public health, 21(10), 1357. Retrieved from https://doi.org/10.3390/ijerph21101357

Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). BIG DATA IN HEALTHCARE: MANAGEMENT, ANALYSIS AND FUTURE PROSPECTS. Journal of big data, 6(1), 1-25. Retrieved from https://doi.org/10.1186/s40537-019-0217-0

Demircan, F., Ekinci, M., & Cömert, Z. (2025). ENHANCING INTRA-AURAL DISEASE CLASSIFICATION WITH ATTENTION-BASED DEEP LEARNING MODELS. Neural Computing and Applications, 1-16. Retrieved from https://doi.org/10.1007/s00521-025-10990-4

Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. (2017). DERMATOLOGIST-LEVEL CLASSIFICATION OF SKIN CANCER WITH DEEP NEURAL NETWORKS. Nature, 542, 115–118. Retrieved from https://doi.org/10.1038/nature21056

Evans, R. S. (2016). ELECTRONIC HEALTH RECORDS: THEN, NOW, AND IN THE FUTURE. Yearbook of Medical Informatics. Retrieved from https://doi.org/10.15265/IYS-2016-s006

Fu, X., Lin, R., Du, W., Tavares, A., & Liang, Y. (2025). EXPLAINABLE HYBRID TRANSFORMER FOR MULTI-CLASSIFICATION OF LUNG DISEASE USING CHEST X-RAYS. Scientific Reports, 15(1), 6650. Retrieved from https://doi.org/10.1038/s41598-025-90607-x

Gharge, S., Singh, V., Kakhandki, V., & Reddy, P. (2024, June). DETECTION OF RETINAL DISEASE USING DEEP LEARNING ARCHITECTURE. In International Conference on Intelligent Computing and Big Data Analytics (pp. 220-233). Cham: Springer Nature Switzerland.

Grzybowski, A., Brona, P., Lim, G., Ruamviboonsuk, P., Tan, G. S., Abramoff, M., & Ting, D. S. (2020). ARTIFICIAL INTELLIGENCE FOR DIABETIC RETINOPATHY SCREENING: A REVIEW. Eye, 34(3), 451-460. Retrieved from https://doi.org/10.1038/s41433-019-0566-0

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). GENERATIVE ADVERSARIAL NETS. Advances in neural information processing systems, 27. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2014/hash/f033ed80deb0234979a61f95710dbe25-Abstract.html

Gupta, S., Dubey, A. K., Singh, R., Kalra, M. K., Abraham, A., Kumari, V., ... & Suri, J. S. (2024). FOUR TRANSFORMER-BASED DEEP LEARNING CLASSIFIERS EMBEDDED WITH AN ATTENTION U-NET-BASED LUNG SEGMENTER AND LAYER-WISE RELEVANCE PROPAGATION-BASED HEATMAPS FOR COVID-19 X-RAY SCANS. Diagnostics, 14(14), 1534. Retrieved from https://doi.org/10.3390/diagnostics14141534

He, K., Gan, C., Li, Z., Rekik, I., Yin, Z., Ji, W., ... & Shen, D. (2023). TRANSFORMERS IN MEDICAL IMAGE ANALYSIS. Intelligent Medicine, 3(1), 59-78. Retrieved from https://doi.org/10.1016/j.imed.2022.07.002

Houssami, N., Kirkpatrick-Jones, G., Noguchi, N., & Lee, C. I. (2019). ARTIFICIAL INTELLIGENCE (AI) FOR THE EARLY DETECTION OF BREAST CANCER: A SCOPING REVIEWTO ASSESS AI’S POTENTIAL IN BREAST SCREENING PRACTICE. Expert Review of Medical Devices 16(5), 351-362. https://doi.org/10.1080/17434440.2019.1610387

Iqbal, S., N. Qureshi, A., Li, J., & Mahmood, T. (2023). ON THE ANALYSES OF MEDICAL IMAGES USING TRADITIONAL MACHINE LEARNING TECHNIQUES AND CONVOLUTIONAL NEURAL NETWORKS. Archives of Computational Methods in Engineering, 30(5), 3173-3233. Retrieved from https://link.springer.com/article/10.1007/s11831-023-09899-9

Lai, T. (2024). INTERPRETABLE MEDICAL IMAGERY DIAGNOSIS WITH SELF-ATTENTIVE TRANSFORMERS: A REVIEW OF EXPLAINABLE AI FOR HEALTH CARE. BioMedInformatics, 4(1), 113-126. Retrieved from https://doi.org/10.3390/biomedinformatics4010008

Li, J., Nan, Z., Qi, G., Cai, J., Zhao, X., Li, X., ... & Yu, G. (2024). ASSESSING SEVERITY OF PEDIATRIC PNEUMONIA USING MULTIMODAL TRANSFORMERS WITH MULTI-TASK LEARNING. Digital Health, 10. Retrieved from

https://doi.org/10.1177/2055207624130516

Lin, L., Fu, G., Chen, S., Tao, J., Qian, A., Yang, Y., & Wang, M. (2021). CT MANIFESTATIONS OF CORONAVIRUS DISEASE (COVID-19) PNEUMONIA AND INFLUENZA VIRUS PNEUMONIA: A COMPARATIVE STUDY. American Journal of Roentgenology, 216(1), 71-79. Retrieved from https://doi.org/10.2214/AJR.20.23304

Maheriya, K., Rahevar, M., Parmar, M., Kothadiya, D., Patel, A., & Ganatra, A. (2025). REVOLUTIONIZING PROSTATE CANCER DIAGNOSIS: VISION TRANSFORMERS WITH EXPLAINABLE ARTIFICIAL INTELLIGENCE TO ACCURATE AND INTERPRETABLE PROSTATE CANCER IDENTIFICATION. In Explainable Artificial Intelligence in Medical Imaging (pp. 220-248). Auerbach Publications.

Nassif, A. B., Talib, M. A., Nasir, Q., Afadar, Y., & Elgendy, O. (2022). BREAST CANCER DETECTION USING ARTIFICIAL INTELLIGENCE TECHNIQUES: A SYSTEMATIC LITERATURE REVIEW. Artificial intelligence in medicine, 127, 102276. Retrieved from https://doi.org/10.1016/j.artmed.2022.102276

Rane, N. (2023). TRANSFORMERS FOR MEDICAL IMAGE ANALYSIS: APPLICATIONS, CHALLENGES, AND FUTURE SCOPE. Retrieved from https://ssrn.com/abstract=4622241 or http://dx.doi.org/10.2139/ssrn.4622241

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). CHEXNET: RADIOLOGIST-LEVEL PNEUMONIA DETECTION ON CHEST X-RAYS WITH DEEP LEARNING. arXiv. Retrieved from https://arxiv.org/abs/1711.05225

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). EXPLORING THE LIMITS OF TRANSFER LEARNING WITH A UNIFIED TEXT-TO-TEXT TRANSFORMER. Journal of machine learning research, 21(140), 1-67. Retrieved from https://www.jmlr.org/papers/v21/20-074.html

Raghavendra, U., Gudigar, A., Paul, A., Goutham, T. S., Inamdar, M. A., Hegde, A., ... & Acharya, U. R. (2023). BRAIN TUMOR DETECTION AND SCREENING USING ARTIFICIAL INTELLIGENCE TECHNIQUES: CURRENT TRENDS AND FUTURE PERSPECTIVES. Computers in Biology and Medicine, 163, 107063. Retrieved from https://doi.org/10.1016/j.compbiomed.2023.107063

Perle, J. G., Frye, W. S., & McCoy, T. (2024). DATA SECURITY IN THE DIGITAL AGE: A CONSOLIDATED GUIDE FOR PSYCHOLOGISTS TO UNDERSTAND HEALTH INSURANCE PORTABILITY AND ACCOUNTABILITY ACT-COMPLIANT TELEHEALTH. Translational Issues in Psychological Science, 10(2), 111. Retrieved from https://doi.org/10.1037/tps0000403

Said, Y., Alsheikhy, A. A., Shawly, T., & Lahza, H. (2023). MEDICAL IMAGES SEGMENTATION FOR LUNG CANCER DIAGNOSIS BASED ON DEEP LEARNING ARCHITECTURES. Diagnostics, 13(3), 546. Retrieved from https://doi.org/10.3390/diagnostics13030546

Santos, T., Tariq, A., Das, S., Vayalpati, K., Smith, G. H., Trivedi, H., & Banerjee, I. (2023, April). PATHOLOGYBERT-PRE-TRAINED VS. A NEW TRANSFORMER LANGUAGE MODEL FOR PATHOLOGY DOMAIN. In AMIA annual symposium proceedings (Vol. 2022, p. 962). Retrieved from PathologyBERT - Pre-trained Vs. A New Transformer Language Model for Pathology Domain - PMC

Shamshad, F., Khan, S., Zamir, S. W., Khan, M. H., Hayat, M., Khan, F. S., & Fu, H. (2023). TRANSFORMERS IN MEDICAL IMAGING: A SURVEY. Medical image analysis, 88. Retrieved from https://doi.org/10.1016/j.media.2023.102802

Singh, S., & Mahmood, A. (2021). THE NLP COOKBOOK: MODERN RECIPES FOR TRANSFORMER BASED DEEP LEARNING ARCHITECTURES. Ieee Access, 9. Retrieved from https://ieeexplore.ieee.org/abstract/document/9422763

Silva, P. S., Zhang, D., Jacoba, C. M. P., Fickweiler, W., Lewis, D., Leitmeyer, J., ... & Aiello, L. P. (2024). AUTOMATED MACHINE LEARNING FOR PREDICTING DIABETIC RETINOPATHY PROGRESSION FROM ULTRA-WIDEFIELD RETINAL IMAGES. JAMA ophthalmology, 142(3), 171-178. Retrieved from https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2814752

Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., & Beyer, L. (2021). HOW TO TRAIN YOUR VIT? DATA, AUGMENTATION, AND REGULARIZATION IN VISION TRANSFORMERS. ArXiv. Retrieved from

https://doi.org/10.48550/arXiv.2106.10270

Teufel, A., & Binder, H. (2021). CLINICAL DECISION SUPPORT SYSTEMS. Visceral medicine, 37(6), 491-498. Retrieved from https://doi.org/ 10.1159/000519420

Vafaeezadeh, M., Behnam, H., & Gifani, P. (2024). ULTRASOUND IMAGE ANALYSIS WITH VISION TRANSFORMERS. Diagnostics, 14(5), 542. Retrieved from https://doi.org/10.3390/diagnostics14050542

Vasani, V. P., Pawar, S. C., Ahamad, S., Sahu, A., & Talele, G. (2024, November). TRANSFORMER MODELS FOR ENHANCED NATURAL LANGUAGE PROCESSING IN MEDICAL RECORDS MANAGEMENT. In 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 1808-1814). IEEE. DOI: 10.1109/ICTACS62700.2024.10840744

Vujosevic, S., Aldington, S. J., Silva, P., Hernández, C., Scanlon, P., Peto, T., & Simó, R. (2020). SCREENING FOR DIABETIC RETINOPATHY: NEW PERSPECTIVES AND CHALLENGES. The Lancet Diabetes & Endocrinology, 8(4), 337-347. Retrieved from https://www.thelancet.com/journals/landia/article/PIIS2213-8587(19)30411-5/abstract

Yan, A., McAuley, J., Lu, X., Du, J., Chang, E. Y., Gentili, A., & Hsu, C. N. (2022). RADBERT: ADAPTING TRANSFORMER-BASED LANGUAGE MODELS TO RADIOLOGY. Radiology: Artificial Intelligence, 4(4), e210258. Retrieved from https://doi.org/10.1148/ryai.210258

Wang, A., Chen, H., Lin, Z., Han, J., & Ding, G. (2024). REPVIT: REVISITING MOBILE CNN FROM VIT PERSPECTIVE. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 15909-15920). Retrieved from https://openaccess.thecvf.com/content/CVPR2024/papers/Wang_RepViT_Revisiting_Mobile_CNN_From_ViT_Perspective_CVPR_2024_paper.pdf

Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Beck, A. H. (2016). DEEP LEARNING FOR IDENTIFYING METASTATIC BREAST CANCER. arXiv. Retrieved from https://arxiv.org/abs/1606.05718

Watanabe, A.T., Lim, V., Vu, H.X., Weise, E., Liu, J., Bradley, W. G., & Comstock, C. E. (2019). IMPROVED CANCER DETECTION USING ARTIFICIAL INTELLIGENCE: A RETROSPECTIVE EVALUATION OF MISSED CANCERS ON MAMMOGRAPHY. J Digit Imaging 32, 625–637.https://doi.org/10.1007/s10278-019-00192-5