Login

PERAMALAN PERMINTAAN PRODUK MAKANAN MX GUNA MENINGKATKAN AKURASI PERENCANAAN PRODUKSI DAN PENGENDALIAN PERSEDIAAN DI PT XYZ

Vol. 4 No. 04 (2025): JURNAL MULTIDISIPLINER KAPALAMADA:

Lifia Citra Ramadhanti (1), Rakay Edhiargo Toyosito (2), Angga Widyas Swara (3), Abby Yazid Bustommy (4), Moch Eko Nugroho (5)

(1) Universitas Singaperbangsa Karawang, Indonesia
(2) Universitas Tangerang Raya, Indonesia
(3) Universitas Tangerang Raya, Indonesia
(4) Universitas Tangerang Raya, Indonesia
(5) Universitas Tangerang Raya, Indonesia
Fulltext View | Download

Abstract:

Demand forecasting plays a crucial role in production planning and inventory control, particularly in the food industry, which is characterized by fluctuating demand and limited product shelf life. This study aims to analyze and apply demand forecasting methods for MX food products in order to improve the accuracy of production planning and inventory control at PT XYZ. Historical sales data are utilized to generate demand forecasts by comparing several quantitative methods, including moving average, exponential smoothing, and linear regression. The accuracy of each forecasting method is evaluated using forecasting error measurements such as Mean Absolute Deviation (MAD), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE). The results indicate that the method with the lowest forecasting error provides more accurate demand estimates, enabling the company to reduce excess inventory and stock shortages. Improved forecasting accuracy contributes to more efficient production planning, lower inventory costs, and better managerial decision-making at PT XYZ.

References

Ashshabrina, Z., & Vikaliana, R. (n.d.). ANALISIS PERENCANAAN PRODUKSI PRODUK PERTALITE MENGGUNAKAN METODE FORECASTING DI PT KILANG PERTAMINA INTERNASIONAL RU IV CILACAP. Ikraith-Teknologi. https://doi.org/10.37817/IKRAITH-Teknologi

Guslan, D., & Fatimah, L. (2021). ANALISIS RAMALAN PERMINTAAN PRODUK ROTI INDUSTRI TIARA RIZKI METODE NAIVE DAN METODE DOUBLE EXPONENTIAL SMOOTHING. Jurnal Logistik Bisnis, 11(2). https://ejurnal.poltekpos.ac.id/index.php/logistik/index

Hayuningtyas, R. Y., & Sari, R. (n.d.). APLIKASI PERAMALAN ALAT KESEHATAN MENGGUNAKAN SINGLE MOVING AVERAGE. Infotech Journal, 3(1). http://ejournal.bsi.ac.id/ejurnal/index.php/infortech40

Kück, M., & Freitag, M. (2021). FORECASTING OF CUSTOMER DEMANDS FOR PRODUCTION PLANNING BY LOCAL K-NEAREST NEIGHBOR MODELS. International Journal of Production Economics, 231, 107837. https://doi.org/10.1016/j.ijpe.2020.107837

Nasirudin, F., Pindianti, M., Indah, D., Said, S., & Widodo, E. (2022). PERAMALAN JUMLAH PRODUKSI KOPI DI JAWA TIMUR PADA TAHUN 2020–2021 MENGGUNAKAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA). Agrium, 25(1). https://doi.org/10.30596/agrium.v25i1.8211

Rezai, A. F. (n.d.). Improving the production forecasts: Developing a forecasting model using exponential smoothing (Degree project).

Siddiqui, R., Azmat, M., Ahmed, S., & Kummer, S. (2022). A HYBRID DEMAND FORECASTING MODEL FOR GREATER FORECASTING ACCURACY: THE CASE OF THE PHARMACEUTICAL INDUSTRY. Supply Chain Forum, 23(2), 124–134. https://doi.org/10.1080/16258312.2021.1967081

Studi Teknik Elektronika Politeknik Gajah Tunggal, Girsang, M. A., & Cahyono, M. R. A. (2021a). ANALISA METODE PERAMALAN DAN PERANCANGAN PROGRAM PERENCANAAN PRODUKSI BERBASIS VBA MACRO EXCEL PADA PT. MC. Jurnal Teknologi Industri Terapan, 3(1). https://jurnal.poltek-gt.ac.id/index.php/jiti/85

Studi Teknik Elektronika Politeknik Gajah Tunggal, Girsang, M. A., & Cahyono, M. R. A. (2021b). ANALISA METODE PERAMALAN DAN PERANCANGAN PROGRAM PERENCANAAN PRODUKSI BERBASIS VBA MACRO EXCEL PADA PT. MC. Jurnal Teknologi Industri Terapan, 3(1). https://jurnal.poltek-gt.ac.id/index.php/jiti/85

Toyosito, R. E., Ramadhanti, L. C., & Bustommy, A. Y. (2021). PENJADWALAN FLOW SHOP DENGAN METODE ALGORITMA HEURISTIK POUR, ALGORITMA CAMPBELL DUDEK AND SMITH, DAN ALGORITMA TABU SEARCH DI INDUSTRI PORCELAIN TABLEWARE. Jurnal JITES, 1(1).

Van Steenbergen, R. M., & Mes, M. R. K. (2020). FORECASTING DEMAND PROFILES OF NEW PRODUCTS. Decision Support Systems, 139, 113401. https://doi.org/10.1016/j.dss.2020.113401

Vikaliana, R., & Sutisna, F. (2024). ANALISIS PERENCANAAN PRODUKSI LPG MENGGUNAKAN PENDEKATAN FORECASTING. Euler: Jurnal Ilmiah Matematika, Sains dan Teknologi, 12(1), 90–95. https://doi.org/10.37905/euler.v12i1.25317